Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38564132

RESUMO

The Jinhua-Quzhou basin in China is one of the most susceptible areas to drought. Due to the loss of vegetation and great fluctuations in rainfall and surface temperature, global warming occurs. Timely, accurate, and effective drought monitoring is crucial for protecting local vegetation and determining which vegetation is most vulnerable to increased LST during the period 1982-2019. It assumes a strong correlation between loss of vegetation cover, changes in monsoon climate, drought, and increases in land surface temperature (LST). Due to significantly increased in LST, low precipitation and vegetation cover, NDVI, TVDI, VCI, and NAP are useful in characterizing drought mitigation strategies. The temperature vegetation drought index (TVDI), normalized difference vegetation index (NDVI), vegetation condition index (VCI), and monthly precipitation anomaly percentage (NAP) can be helped to characterize drought reduction strategies. Monthly NDVI, NAP, VCI, TVDI, normalized vegetation supply water index (NVSWI), temperature condition index (TCI), vegetation health index (VHI), and heat map analysis indicate that the Jinhua-Quzhou basin experienced drought during 1984, 1993, 2000, and 2011. Seasonal SR, WVP, WS, NDVI, VCI, and NAP charts confirm that the Jinhua-Quzhou basin was affected by severe drought in 1984, which continued and led to severe droughts in 1993, 2000, and 2011. Regression analysis showed a significant positive correlation between NDVI, TVDI, VCI, and NAP values, while NVSWI, TVDI, and VHI showed positive signs of good drought monitoring strategies. The research results confirm the correlation between loss of vegetation cover and LST, which is one of the causes of global warming. The distribution of drought changed a trend indicating that compared with the Jinhua region; the Quzhou region has more droughts. The changing trend of drought has characteristics from 1982 to 2019, and there are significant differences in drought changing trends between different Jinhua-Quzhou basin areas. Overall, from 1982 to 2019, the frequency of drought showed a downward trend. We believe that these results will provide useful tools for drought management plans and play a relevant role in mitigating the effects of drought and protecting humanity from climate hazards.

2.
J Control Release ; 369: 630-641, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38599548

RESUMO

Successful treatment of ulcerative colitis (UC) is highly dependent on several parameters, including dosing regimen and the ability to deliver drugs to the disease site. In this study two strategies for delivering mesalazine (5-aminosalicylic acid, 5-ASA) to the colon were compared in an advanced in vitro model of the human gastrointestinal (GI) tract, the SHIME® system. Herein, a prodrug strategy employing bacteria-mediated drug release (sulfasalazine, Azulfidine®) was evaluated alongside a formulation strategy that utilised pH and bacteria-mediated release (5-ASA, Octasa® 1600 mg). SHIME® experiments were performed simulating both the GI physiology and colonic microbiota under healthy and inflammatory bowel disease (IBD) conditions, to study the impact of the disease state and ileal pH variability on colonic 5-ASA delivery. In addition, the effects of the products on the colonic microbiome were investigated by monitoring bacterial growth and metabolites. Results demonstrated that both the prodrug and formulation approaches resulted in a similar percentage of 5-ASA recovery under healthy conditions. On the contrary, during experiments simulating the GI physiology and microbiome of IBD patients (the target population) the formulation strategy resulted in a higher proportion of 5-ASA delivery to the colonic region as compared to the prodrug approach (P < 0.0001). Interestingly, the two products had distinct effects on the synthesis of key bacterial metabolites, such as lactate and short chain fatty acids, which varied according to disease state and ileal pH variability. Further, both 5-ASA and sulfasalazine significantly reduced the growth of the faecal microbiota sourced from six healthy humans. The findings support that the approach selected for colonic drug delivery could significantly influence the effectiveness of UC treatment, and highlight that drugs licensed for UC may differentially impact the growth and functioning of the colonic microbiota.

3.
J Control Release ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641022

RESUMO

Upadacitinib, classified as a highly soluble drug, is commercially marketed as RINVOQ®, an modified-release formulation incorporating hydroxypropyl methylcellulose as a matrix system to target extended release throughout the gastrointestinal (GI) tract. Our study aimed to explore how drug release will occur throughout the GI tract using a plethora of in vitro and in silico tools. We built a Physiologically-Based Pharmacokinetic (PBPK) model in GastroPlus™ to predict the systemic concentrations of the drug when administered using in vitro dissolution profiles as input to drive luminal dissolution. A series of in vitro dissolution experiments were gathered using the USP Apparatus I, III and IV in presence of biorelevant media, simulating both fasted and fed state conditions. A key outcome from the current study was to establish an in vitro-in vivo correlation (IVIVC) between (i) the dissolution profiles obtained from the USP I, III and IV methods and (ii) the fraction absorbed of drug as deconvoluted from the plasma concentration-time profile of the drug. When linking the fraction dissolved as measured in the USP IV model, a Level A IVIVC was established. Moreover, when using the different dissolution profiles as input for PBPK modeling, it was also observed that predictions for plasma Cmax and AUC were most accurate for USP IV compared to the other models (based on predicted versus observed ratios). Furthermore, the PBPK model has the utility to extract the predicted concentrations at the level of the colon which can be of utmost interest when working with specific in vitro assays.

4.
Int J Pharm ; : 124140, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643809

RESUMO

Rare diseases are infrequent, but together they affect up to 6-10 % of the world's population, mainly children. Patients require precise doses and strict adherence to avoid metabolic or cardiac failure in some cases, which cannot be addressed in a reliable way using pharmaceutical compounding. 3D printing (3DP) is a disruptive technology that allows the real-time personalization of the dose and the modulation of the dosage form to adapt the medicine to the therapeutic needs of each patient. 3D printed chewable medicines containing amino acids (citrulline, isoleucine, valine, and isoleucine and valine combinations) were prepared in a hospital setting, and the efficacy and acceptability were evaluated in comparison to conventional compounded medicines in six children. The inclusion of new flavours (lemon, vanilla and peach) to obtain more information on patient preferences and the implementation of a mobile app to obtain patient feedback in real-time was also used. The 3D printed medicines controlled amino acid levels within target levels as well as the conventional medicines. The deviation of citrulline levels was narrower and closer within the target concentration with the chewable formulations. According to participants' responses, the chewable formulations were well accepted and can improve adherence and quality of life. For the first time, 3DP enabled two actives to be combined in the same formulation, reducing the number of administrations. This study demonstrated the benefits of preparing 3D printed personalized treatments for children diagnosed with rare metabolic disorders using a novel technology in the real clinical practice over the current approach.

5.
Heliyon ; 10(6): e28073, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524527

RESUMO

Recent widespread connections of renewable energy resource (RESs) in place of fossil fuel supplies and the adoption of electrical vehicles in place of gasoline-powered vehicles have given birth to a number of new concerns. The control architecture of linked power networks now faces an increasingly pressing challenge: tie-line power fluctuations and reducing frequency deviations. Because of their nature and dependence on external circumstances, RESs are analogous to continually fluctuating power generators. Using a fractional order-based frequency regulator, this work presents a new method for improving the frequency regulation in a two-area interconnected power system. In order to deal with the frequency regulation difficulties of the hybrid system integrated with RES, the suggested controller utilizes the modified form of fractional order proportional integral derivative (FOPID) controller known as FOI-PDN controller. The new proposed controllers are designed using the white shark optimizer (WSO), a current powerful bioinspired meta heuristic algorithm which has been motivated by the learning abilities of white sharks when actively hunting in the environment. The suggested FOI-PDN controller's performance was compared to that of various control methodologies such as FOPID, and PID. Furthermore, the WSO findings are compared to those of other techniques such as the salp swarm algorithm, sine cosine algorithm and fitness dependent optimizer. The recommended controller and design approach have been tested and validated at different loading conditions and different circumstances, as well as their robustness against system parameter suspicions. The simulation outcomes demonstrate that the WSO-based tuned FOI-PDN controller successfully reduces peak overshoot by 73.33%, 91.03%, and 77.21% for region-2, region-1, and link power variation respectively, and delivers minimum undershoot of 89.12%, 83.11%, and 78.10% for both regions and tie-line. The obtained findings demonstrate the new proposed controller's stable function and frequency controlling performance with optimal controller parameters and without the requirement for a sophisticated design process.

6.
World J Microbiol Biotechnol ; 40(4): 129, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459287

RESUMO

Fungal infections represent a challenging threat to the human health. Microsporum gypseum and Trichophyton rubrum are pathogenic fungi causing various topical mycoses in humans. The globally emerging issue of resistance to fungi demands the development of novel therapeutic strategies. In this context, the application of nanoliposomes as vehicles for carrying active therapeutic agents can be a suitable alternative. In this study, rhinacanthin-C was isolated from Rhinacanthus naustus and encapsulated in nano-liposomal formulations, which were prepared by the modified ethanol injection method. The two best formulations composed of soybean phosphatidylcholine (SPC), cholesterol (CHL), and tween 80 (T80) in a molar ratio of 1:1:0 (F1) and 1:1:0.5 (F2) were proceeded for experimentation. The physical characteristics and antifungal activities were performed and compared with solutions of rhinacanthin-C. The rhinacanthin-C encapsulating efficiencies in F1 and F2 were 94.69 ± 1.20% and 84.94 ± 1.32%, respectively. The particle sizes were found to be about 221.4 ± 13.76 nm (F1) and 115.8 ± 23.33 nm (F2), and zeta potential values of -38.16 mV (F1) and -40.98 mV (F2). Similarly, the stability studies of rhinacanthin-C in liposomes demonstrated that rhinacanthin-C in both formulations was more stable in mediums with pH of 4.0 and 6.6 than pure rhinacanthin-C when stored at the same conditions. Rhinacanthin-C in F1 was slightly more stable than F2 when stored in mediums with a pH of 10.0 after three months of storage. However, rhinacanthin-C in both formulations was less stable than pure rhinacanthin-C in a basic medium of pH 10.0. The antifungal potential was evaluated against M. gypsum and T. rubrum. The findings revealed a comparatively higher zone of inhibition for F1. In the MIC study, SPC: CHL: T80 showed higher inhibition against M. gypseum and a slightly higher inhibition against T. rubrum compared to free rhinacanthin-C solution. Moreover, rhinacanthin-C showed significant interaction against 14α-demethylase in in silico study. Overall, this study demonstrates that nanoliposomes containing rhinacanthin-C can improve the stability and antifungal potential of rhinacanthin-C with sustained and prolonged duration of action and could be a promising vehicle for delivery of active ingredients for targeting various fungal infections.


Assuntos
Acanthaceae , Micoses , Naftoquinonas , Humanos , Antifúngicos/farmacologia , Extratos Vegetais/farmacologia , Naftoquinonas/química , Acanthaceae/química
7.
J Control Release ; 369: 163-178, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38521168

RESUMO

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.

8.
ISA Trans ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38433069

RESUMO

This paper considers an output feedback consensus control approach for the generic linear multi-agent systems (MASs) under input saturation over a directed graph. A region of stability-based approach has been established for dealing with the input saturation. A conventional Luenberger observer for estimating the states of followers by themselves and an advanced cooperative observer for estimating the state of leader by followers have been applied for an estimated state feedback control. The stability conditions have been derived by considering a three-term-based combined Lyapunov function. Moreover, computationally simple controller and estimator design conditions have been obtained by resorting to a decoupling approach A set of initial conditions has been investigated to achieve the leader-following consensus of MASs under the input saturation constraint. To the best of our knowledge, an output feedback consensus approach, providing a consensus region, for generic linear MASs under input saturation over directed graphs without requiring the exact state of the leader has been explored for the first time. In contrast to the existing methods, the proposed approach considers an output feedback approach (rather than the state feedback), accounts for both linear and nonlinear saturation regions, applies an estimate of the state of the leader through cooperative observer, and is based on a generalized sector condition for the saturation nonlinearity. In addition, it offers a computationally simple design solution owing to the proposed decoupling method. Simulation results are provided to validate the efficacy of the designed protocol for F-18 aircraft and unmanned ground vehicles.

9.
Int J Pharm ; 655: 124005, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38493841

RESUMO

The aim of this study was to exploit the versatility of inkjet printing to develop flexible doses of drug-loaded orodispersible films that encoded information in a data matrix pattern, and to introduce a specialised data matrix-generator software specifically focused on the healthcare sector. Pharma-inks (drug-loaded inks) containing hydrocortisone (HC) were developed and characterised based on their rheological properties and drug content. Different strategies were investigated to improve HC solubility: formation of ß-cyclodextrin complexes, Soluplus® based micelles, and the use of co-solvent systems. The software automatically adapted the data matrix size and identified the number of layers for printing. HC content deposited in each film layer was measured, and it was found that the proportion of co-solvent used directly affected the drug solubility and simultaneously played a role in the modification of the viscosity and surface tension of the inks. The formation of ß-cyclodextrin complexes improved the drug quantity deposited in each layer. On the contrary, micelle-based inks were not suitable for printing. Orodispersible films containing flexible and low doses of personalised HC were successfully prepared, and the development of a code generator software oriented to medical use provided an additional, innovative, and revolutionary advantage to personalised medicine safety and accessibility.


Assuntos
Hidrocortisona , beta-Ciclodextrinas , Solventes , Micelas , Impressão
10.
Int J Surg Case Rep ; 117: 109564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518463

RESUMO

INTRODUCTION AND IMPORTANCE: Capillary hemangioma of larynx can occur in both pediatric and adult population. However, epiglottic capillary hemangioma in adults is a very rare presentation. Its pathophysiological basis involves self limiting and self expanding vascularization and it is a characteristically well delineated benign mass. CASE PRESENTATION: Here we present a case of a 40-year-old female who presented with complaint of per oral bleed in spitting which was about a teaspoon in quantity since 1 month. There was no associated hoarseness, dysphagia, respiratory distress, hemoptysis or neck swelling. There were no other systemic manifestations i.e. weight loss, fatigue or anemia. There was no familial history. CLINICAL DISCUSSION: On examination, Indirect Laryngoscopy (IDL) revealed a mass on the posterior surface of epiglottis. 70° view endoscope confirmed the findings of IDL. All other neighboring structures i.e. vocal cords, anterior and posterior commissures and pyriform fossa were normal and no mass or pathology was seen. Imaging studies contrast enhanced CT scan of neck soft tissue window showed isodense opacity in supraglottic region. Surgical excision and hemostasis were carried out using Colorado bipolar cauterization. The histopathological investigation of the mass revealed a benign lesion compatible with capillary hemangioma. CONCLUSION: As until now, no case of capillary hemangioma of epiglottis has been reported, head and neck surgeons are not well aware of this case. This case report will add valuable insight to the relative surgeons/clinicians.

11.
Ann Med Surg (Lond) ; 86(2): 943-949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333305

RESUMO

Artificial intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems, providing assistance in a variety of patient care and health systems. The aim of this review is to contribute valuable insights to the ongoing discourse on the transformative potential of AI in healthcare, providing a nuanced understanding of its current applications, future possibilities, and associated challenges. The authors conducted a literature search on the current role of AI in disease diagnosis and its possible future applications using PubMed, Google Scholar, and ResearchGate within 10 years. Our investigation revealed that AI, encompassing machine-learning and deep-learning techniques, has become integral to healthcare, facilitating immediate access to evidence-based guidelines, the latest medical literature, and tools for generating differential diagnoses. However, our research also acknowledges the limitations of current AI methodologies in disease diagnosis and explores uncertainties and obstacles associated with the complete integration of AI into clinical practice. This review has highlighted the critical significance of integrating AI into the medical healthcare framework and meticulously examined the evolutionary trajectory of healthcare-oriented AI from its inception, delving into the current state of development and projecting the extent of reliance on AI in the future. The authors have found that central to this study is the exploration of how the strategic integration of AI can accelerate the diagnostic process, heighten diagnostic accuracy, and enhance overall operational efficiency, concurrently relieving the burdens faced by healthcare practitioners.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38319458

RESUMO

The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.

13.
PLoS One ; 19(2): e0296471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381738

RESUMO

The Tennessee Eastman Process (TEP) is widely recognized as a standard reference for assessing the effectiveness of fault detection and false alarm tracking methods in intricate industrial operations. This paper presents a novel methodology that employs the Adaptive Crow Search Algorithm (ACSA) to improve fault identification capabilities and mitigate the occurrence of false alarms in the TEP. The ACSA is an optimization approach that draws inspiration from the observed behavior of crows in their natural environment. This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. The primary objective of our research is to devise a monitoring strategy that is adaptable in nature, with the aim of efficiently identifying faults within the TEP while simultaneously minimizing the occurrence of false alarms. The ACSA is applied in order to enhance the optimization of monitoring variables, alarm thresholds, and decision criteria selection and configuration. When compared to traditional static approaches, the ACSA-based monitoring strategy is better at finding faults and reducing false alarms because it adapts well to changes in process dynamics and disturbances. In order to assess the efficacy of our suggested methodology, we have conducted comprehensive simulations on the TEP dataset. The findings suggest that the monitoring strategy based on ACSA demonstrates superior fault identification rates while concurrently mitigating the frequency of false alarms. In addition, the flexibility of ACSA allows it to efficiently manage process variations, disturbances, and uncertainties, thereby enhancing its robustness and reliability in practical scenarios. To validate the effectiveness of our proposed approach, extensive simulations were conducted on the TEP dataset. The results indicate that the ACSA-based monitoring strategy achieves higher fault detection rates while simultaneously reducing the occurrence of false alarms. Moreover, the adaptability of ACSA enables it to effectively handle process variations, disturbances, and uncertainties, making it robust and reliable for real-world applications. The contributions of this research extend beyond the TEP, as the adaptive monitoring strategy utilizing ACSA can be applied to other complex industrial processes. The findings of this study provide valuable insights into the development of advanced fault detection and false alarm monitoring techniques, offering significant benefits in terms of process safety, reliability, and operational efficiency.


Assuntos
Algoritmos , Meio Ambiente , Reprodutibilidade dos Testes , Tennessee
14.
Arch Microbiol ; 206(3): 129, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416214

RESUMO

Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.


Assuntos
Antifúngicos , Fungos , Agricultura , Agentes de Controle Biológico , Gerenciamento Clínico
15.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337932

RESUMO

Droughts have become more severe and frequent due to global warming. In this context, it is widely accepted that for drought assessments, both water supply (rainfall) and demand (standardized precipitation evapotranspiration index, SPEI) should be considered. Using SPEI, we explored the spatial-temporal patterns of dry and wet annual and seasonal changes in five sub-regions of East Asia during 1902-2018. These factors are linked to excess drought frequency and severity on the regional scale, and their effect on vegetation remains an important topic for climate change studies. Our results show that the SPEI significantly improved extreme drought and mostly affected the SPEI-06 and SPEI-12 growing seasons in East Asia during 1981-2018. The dry and wet annual SPEI trends mostly affect the five sub-regions of East Asia. The annual SPEI had two extremely dry spells during 1936-1947 and 1978-2018. Japan, South Korea, and North Korea are wet in the summer compared to other regions of East Asia, with drought frequency occurring at 51.4%, respectively. The mean drought frequencies in China and Mongolia are 57.4% and 54.6%. China and Mongolia are the driest regions in East Asia due to high drought frequency and duration. The spatial seasonal analysis of solar radiation (SR), water vapor pressure (WVP), wind speed (WS), vegetation condition index (VCI), temperature condition index (TCI), and vegetation health index (VHI) have confirmed that the East Asia region suffered from maximum drought events. The seasonal variation of SPEI shows no clear drying trends during summer and autumn seasons. During the winter and spring seasons, there was a dry trend in East Asia region. During 1902-1990, a seasonal SPEI presented diverse characteristics, with clear wet trends in Japan, Mongolia, and North Korea in four different growing seasons, with dry trends in China and South Korea. During 1991-2018, seasonal SPEI presented clear dry trends in Japan, Mongolia, and North Korea in different growing seasons, while China and South Korea showed a wet trend during the spring, autumn, and winter seasons. This ecological and climatic mechanism provides a good basis for the assessment of vegetation and drought-change variations within East Asia. An understandings of long-term vegetation trends and the effects of rainfall and SPEI on droughts of varying severity is essential for water resource management and climate change adaptation. Based on the results, water resources will increase under global warming, which may alleviate the water scarcity issue in the East Asia region.

16.
Pest Manag Sci ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312101

RESUMO

BACKGROUND: To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS: The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 µm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 µm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION: Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.

17.
Biochem Genet ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347291

RESUMO

RCI2/PMP3s are involved in biotic and abiotic stresses and have an influence on the regulation of many genes. RCI2/PMP3 genes, which particularly encode small membrane proteins of the PMP3 family, are involved in abiotic stress responses in plants. In this work, in silico studies were used to investigate RCI2's potential function in stress tolerance and organogenesis. We conducted an extensive study of the RCI2 gene family and revealed 36 RCI2 genes from cotton species that were distributed over 36 chromosomes of the cotton genome. Functional and phylogenetic examination of the RCI2/PMP3 gene family has been studied in Arabidopsis, but in cotton, the RCI2/PMP3 genes have not yet been studied. Phylogenetic and sequencing studies revealed that cotton RCI2s are conserved, with most of them categorized into six distinct clades. A chromosome distribution and localization study indicated that cotton RCI2 genes were distributed unevenly on 36 chromosomes with segmental duplications, suggesting that the cotton RCI2 family is evolutionarily conserved. Many cis-elements related to stress responsiveness, development, and hormone responsiveness were detected in the promoter regions of the cotton RCI2. Moreover, the 36 cotton RCI2s revealed tissue-specific expression patterns in the development of cotton performed by transcriptome analysis. Gene structure analysis indicated that nearly all RCI2 genes have two exons and one intron. All of the cotton RCI2 genes were highly sensitive to drought, abscisic acid, salt, and cold treatments, demonstrating that they may be employed as genetic objects to produce stress-resistant plants.

18.
J Ethnopharmacol ; 325: 117851, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336182

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Raphanus sativus L. is a well-known medicinal plant with traditional therapeutic applications in various common ailments including inflammation and asthma. AIMS OF THE STUDY: This study aimed to evaluate the chemical composition and anti-asthmatic potential of the hydro-methanolic extract of the leaves of R. sativus L. (Rs.Cr) using various in vitro and in vivo investigations. MATERIALS AND METHODS: The Rs.Cr was subjected to preliminary phytochemical analysis and HPLC profiling. The safety was assessed through oral acute toxicity tests in mice. The antiasthmatic effect of the extract was studied using milk-induced leukocytosis and ovalbumin (OVA)-induced allergic asthma models established in mice. While mast cell degranulation and passive paw anaphylaxis models were established in rats. Moreover, effect of the extract was studied on various oxidative and inflammatory makers. The antioxidant effect of the extract was also studied by in vitro DPPH method. RESULTS: The HPLC profiling of Rs.Cr showed the presence of important polyphenols in a considerable quantity. In toxicity evaluation, Rs.Cr showed no sign of morbidity or mortality with LD50 < 2000 mg/kg. The extract revealed significant mast cell disruption in a dose-dependent manner compared to the intoxicated group. Similarly, treatment with Rs.Cr and dexamethasone significantly (p < 0.001) reduced paw edema volume. Subcutaneous injection of milk at a dose of 4 mL/kg, after 24 h of its administration, showed an increase in the leukocyte count in the intoxicated group. Similarly, mice treated with dexamethasone and Rs.Cr respectively showed a significant decrease in leukocytes and eosinophils count in the ovalbumin-induced allergic asthma model. The extract presented a significant (p˂0.001) alleviative effect on the levels of SOD and GSH, MDA, IL-4, IL-5, and IL-13 in a dose-dependent manner as compared to the intoxicated group. Furthermore, the histological evaluation also revealed a notable decrease in inflammatory and goblet cell count with reduced mucus production. CONCLUSION: The current study highlights mechanism-based novel insights into the anti-asthmatic potential of R. sativus that also strongly supports its traditional use in asthma.


Assuntos
Antiasmáticos , Asma , Raphanus , Ratos , Camundongos , Animais , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Raphanus/química , Raphanus/metabolismo , Ovalbumina , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sementes/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
19.
Reprod Biomed Online ; 48(4): 103734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359733

RESUMO

Disruption of women's gut and cervicovaginal microbiota has been associated with multiple gynaecological diseases such as endometriosis, polycystic ovary syndrome, non-cyclic pelvic pain and infertility. Female infertility affects 12.6% of women worldwide; its aetiology is complex and multifactorial and can be underpinned by uterine pathologies, systemic diseases and age. In addition, a new perspective has emerged on the role of the gut and vaginal microbiomes in reproductive health. Research shows that the administration of precisely selected probiotics, often in combination with prior antibiotic treatment, may facilitate the restoration of symbiotic microbiota to increase successful conception and assisted reproductive technology outcomes. However, clarity on this issue from fuller research is currently hampered by a lack of consistency and harmonization in clinical studies: various lactobacilli and bifidobacteria species have been delivered through both the oral and vaginal routes, in different dosages, for different treatment durations. This commentary explores the intricate relationship between the microbiota in the cervicovaginal area and gut of women, exploring their potential contribution to infertility. It highlights ongoing research on the use of probiotic formulations in improving pregnancy outcomes, critically examining the divergent findings in these studies, which complicate a conclusive assessment of the efficacy of these interventions.


Assuntos
Endometriose , Infertilidade Feminina , Probióticos , Gravidez , Feminino , Humanos , Infertilidade Feminina/terapia , Infertilidade Feminina/etiologia , Vagina/microbiologia , Resultado da Gravidez , Endometriose/complicações , Probióticos/uso terapêutico
20.
Int J Biol Macromol ; 254(Pt 1): 127650, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287580

RESUMO

A novel acidophilic GH5 ß-1,4-endoglucanase (TaCel12) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 1.5-fold increase). Deglycosylated TaCel12 migrated as a single band (26.5 kDa) in SDS-PAGE. TaCel12 was acidophilic with a pH optimum of 4.0 and displayed great pH stability (>80 % activity over pH 3.0-5.0). TaCel12 exhibited considerable activity towards sodium carboxymethyl cellulose and sodium alginate with Vmax values of 197.97 µmol/min/mg and 119.06 µmol/min/mg, respectively. Moreover, TaCel12 maintained >80 % activity in the presence of 20 % ethanol and 4.28 M NaCl. Additionally, Mn2+, Pb2+ and Cu2+ negatively affected TaCel12 activity, while the presence of 5 mM Co2+ significantly increased the enzyme activity. Analysis of action mode revealed that TaCel12 required at least four glucose (cellotetraose) residues for hydrolysis to yield cellobiose and cellotriose. Site-directed mutagenesis results suggested that Glu133 and Glu217 of TaCel12 are crucial catalytic residues, with Asp116 displaying an auxiliary function. Production of soluble sugars from lignocellulose is a crucial step in bioethanol development, and it is noteworthy that TaCel12 could synergistically yield fermentable sugars from corn stover and bagasse, respectively. Thus TaCel12 with excellent properties will be considered a potential biocatalyst for applications in various industries, especially for lignocellulosic biomass conversion.


Assuntos
Celulase , Hypocreales , Lignina , Trichoderma , Hidrólise , Celulase/genética , Etanol , Biomassa , Celobiose , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...